FREELY CONVECTIVE HEAT TRANSFER AT THE EXTERNAL SURFACE
OF A VERTICAL ISOTHERMAL CYLINDER

0. G. Martynenko, Yu. A. Sokovishin, UDC 536.25
and M. V. Shapiro

Numerical and experimental results on the freely convective heat transfer of a ver-
tical isothermal cylinder are analyzed. Formulas are proposed for the calculation
of local and average heat-transfer coefficients for Pr = 0,01-100.

In practical heat calculations, the heat transfer at the external surface of a vertical
cylinder in a large motionless volume is determined from data for a vertical plane wall [1,
2]. However, such results are only valid for cylinders of large diameter. When high accu-
racy of the heat-transfer calculation is required (for example, in the construction of pre-~
cision measuring instruments), there is a need for formulas taking into account the effect of
transverse curvature on the heat transfer. It may be noted that there are empirical formu-—
las for the limiting case of thin heated wires.

Calculations of the heat transfer at a vertical cylinder are based on the equation of
a freely convective axisymmetric boundary 1ayer [31:
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with boundary conditions
u=0,v=0,T=T, for r=R,

u=0,T= T°° as r— 00,

(2)

Equation (1) cannot be used for heat transfer calculations in the case of thin vertical
wires when the boundary-layer thickness exceeds the cylinder diameter [4].

Using the self-consistent variables £ and n for the stream function ¥(x, y) and the ex-
cess temperature [5],
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system of equations (1) with the boundary conditions (2) may be rewritten as follows:
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Fig. 1. Local heat-transfer coefficient versus cur-
vature parameter £: 1) Pr = 100; 2) 10; 3) 2.0; &)
0.72; 5) 0.733; 6) 0.1; 7) 0.01; I) accurate solu—
tion; II) [8]; TII) [12]; IV) [9]; V) [7]; VvI) [6];
VII) method of local self-consistency; VIII) experi-
mental [8].

o

F=0, —25:0,6:1 for 1= 0; Z—F:O,Q:O as 1] —>00. (5)

! 1
The literature contains a large number of solutions of Egs. (1)~(2) by the perturbation
method [5-7], the integral method [8, 9], the method of local similarity [10], a numerical
method [11], and a method close to the self-consistent method [12]. All the calculations
were made for a narrow range of the parameters and were not generalized.

The system of equations (4) with the boundary conditions (5) is considered numerically
by a finite-difference method for Pr = 0.01-100 and values of the longitudinal coordinate up
to £ = 10. In the initial cross section (£ = 0) the result transforms to the solution of the
known self-consistent problem of free convection at a vertical isothermal plane plate [1-5].
The results of numerical calculation for a plate (collected in [3]) may be approximated by
the relation

Nu ’
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with error 5% for 0.7 < Pr < 100 and 10% for Pr = 0.1. For Pr > 100 (Nux ~ Pr'/*) and Pr <

0.1 (Nug ~ Pr*/2), Eq. (6) cannot be used, as is evident from the asymptotic solutions.

In Fig. 1 numerical results are shown for the local heat transfer at a vertical cylinder
and, for comparison, other theoretical and experimental data are given. Note that for Pr =
0.7 and & = 1, the curvature leads to a 207 increase in the heat transfer in comparison with
a plane plate, and the correction factor rises with further increase in £. Using Fig. 1, it
is possible to estimate the limits of application of approximate methods for the heat-transfer
calculation. The agreement with the numerical calculations of [11] and the local similarity
method of [10] is the most accurate, although not for all values of Pr.

The curves of the numerical calculation may be approximated by the relations

N N
Gr?}% = (G——~r‘f74 )Pl 4 0.12& = 0.40 Pr’/? 1. 0,12, 7)
x x
. X
Nu, = (Nupy + 034 = 8)

with accuracy 5% for Pr = 0.7-100 and 0 <<&<C 10. For Pr = 0.1 and 0.01 and £ = 5, the error

is 13 and 19%, respectively. An expression of analogous structure is proposed for & =< 0.79-
Pr® 2 in [6]:
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Fig. 2. Comparison of experimental and theoretical
data on mean heat-transfer coefficient. Theoretical
relations: 1) Eq. (12) [13-15]; 2) Eq. (10); 3) Egs.
(16)~(18) [12]; 4) Eq. (13), Pr = 0.72 [9]; 5) Eq.
(14) {16, 17]; 6) Eq. (15) [19, 20]. Experimental
data: 7) water, d/I = 2+107% [3]; 8) air, d/1 =

4 [3, 241; 9) air and helium, d/7 = 1.6+107% [20];
10) air and helium, d/7 = 6.4¢107% [20]; 11) water,
d/7 = 41072 [18]; 12) water, d/l = (4-5)10"2 [18];
13) water, d/7 = 2¢107% [18]; 14) air, ethylene gly-
col, d/7 = 8,5¢107%-5¢10"* [24]; 15) water, oil, d/
1 = 841072 [21-23]); 16) air [8]; 17) helium, argon,
d/7 = 1.9107% [19].

Nu, = (Nu,) - 0.435 % 9)
(Nuy) | +0.435 (

with the same limits of accuracy as Eq. (8). It is a feature of Eqs. (8) and (9) that the
second term, determining the correction for transverse curvature, is independent of Pr and
proportional to the longitudinal coordinate x.

The only experiment on the local heat transfer of a cylinder in air [8] cannot serve as
the basis for verifying the theoretical relations.

Experimental investigations have been made for average values of the heat-transfer co-
efficient. However, the main experiments correspond to large (short cylinder) and small (thin
wire) values of d/7 (Fig. 2). Note the wide ranges of the main parameters: Pr (air, helium,
water, oil, ethylene glycol, and attenuated gas); Ray = 10°-10%; d/7 = 1.6+107"-4 [16-24].

The mean heat-transfer coefficient is obtained by integrating the local value over the
height:

Nu 0,05 —1/4 !

T 058P . 068 (R E)’ (10)
— S [

Nul = (Nul)pl + 0-68 'E, ';i“ G <Z 2 (ll)

Extrapolation of Eq. (10) to large values of Razl/“(Z/d) gives values of the heat transfer that
are too high (Fig. 2). This indicates that such calculations may be used for a cylinder but

not for wires.

Consider other formulas obtained by approximate methods or by analysis of experimental
data., In [13-15] the hypothesis of a steady film was used to derive the relation

l Nu
RN?;4 expl: 2Ra’* / (R 1}4)] =0.6. (12)
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By an integral method, a linear relation in terms of the curvature was cbtained for the
heat transfer [9]:

Nm_ 3 ( 7Pr | 4(2724-315Pr) Ra_,,%_l\. (13)
Ra] 5(20 + 21 Pr) 35(64 - 63 Pr) d )

Analysis of experimental data in [16, 17] led to the recommendation of the following expres-

sion for thin shells:
Ny, —14 ! —1/4 l
R”‘*‘MSR ! - Ra —d>20. (14)

The relation proposed for an attenuated gas in [19, 20] was

1 L
NS 2Ra; b

1/4 ’
Ra In (1+441Ra‘”2)

which is in good agreement with experiment in the range 10*°! < Raz’/“(l/d) < 10%*7, 1n [12],
three regions were distinguished:

. .
RN?/I4_O57 Rar /" — 4 <0.I, (16)
Nu iy ] \0.38 e i
W: 1.3 (Ral 4_5) , 0,1 << Rg —d—<2,1, (17)
Nu /4 l)°”7 i b
Rars = 087 (Ra o) R o>, (18)

which correspond, in the authors' classification, to short cylinders (plane plates), long
cylinders, and wires. Experimental confirmation of Eqs. (16)-(18) for four values of Pr is
given in [18].

In [25] an upper limit at which, with 5% error, the effect of t ansverse curvature on
the heat transfer may be neglected is suggested. This limit is RaZ “(1/d) < 0.033 according
to approximate calculations, but the accurate value is 0.039.

Thus, for Rai‘/“(l/d) < 2 the heat transfer of short and long cylinders may be calculat-
ed using Eq. (10), which is derived from numerical data. For thin wires [Raz1 “(1/a) > 21,
Eq. (18) gives the best agreement with experiment. Using Eqs. (10)-(15) for wires leads to
values of the heat transfer that are too high.

NOTATION

X, r, longitudinal and radial coordinates; u, v, projections of velocity vector on x
and r axes; T, temperature; v, kinematic viscosity; a, thermal diffusivity; R, d, radius and
diameter of cylinder; {, stream function; F, dimensionless stream function; 9, dimensionless
excess temperature; &, n, self-consistent variables of longitudinal and transverse coordi-
nates; Nuy = ayx/X, Nusselt number; Pr = v/a, Prandtl number; Gry = q8(T, — T.)x>/v?, Gras-
hof number; Ra = GrPr, Rayleigh number. Indices: o, external flow; w, wall; pl, plate; x,
local value; 7, value averaged over the length 7.
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RHEODYNAMICS OF NONLINEARLY VISCOPLASTIC LIQUIDS

£. T. Abdinov, Z. M. Ak@medov, UDC 532.5:532.135
R. S. Gurbanov, and K. E. Rustamov

Experimental results are given for the flow of an anomalous liquid and the possibil-
ity of a description of the flow curve that is invariant with respect to the geom-
etry of the transporting medium is discussed.

There has recently been a sharp increase in the number of experimental and theoretical
works devoted to the flow of non-Newtonian liquids. Of particular interest, because of their
wide distribution, is the case of viscoplastic liquids, which are characterized by anomalous
viscosity and also plastic properties such that, beyond some limiting shear stress, the liq-
uid begins to flow.

The rheodynamic study of such systems is also of interest, since it affords the possi-
bility of improving the technological processes in polymer reprocessing, in the production
of composite materials and paint and varnish coatings, in petroleum reprocessing and else-
where in the petroleum industry, and so on.

The extensive experimental material that has been accumulated on the flow of viscoplas-
tic liquids in transporting media of various geometries [1, 2] indicates that the dependence
of the tangential stress T on the shear-rate gradient v is nonlinear. For the solution of
specific problems, the flow curves are approximated by one of the rheological models (Bing-
ham— Shvedov, Balkley-— Herschel, Caisson, etc.); note that the rheological parameters of the
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